Abstract

The purpose of this study is to recover the functional form of both non-linear damping and non-linear restoring forces in the non-linear oscillatory motions of an autonomous system. Using two sets of measured motion response data of the system, an inverse problem is formulated for recovering (or identification): the differential equation of motion is transformed into an equivalent integral equation of motion. The identification, which is non-linear, is shown to be one-to-one. However, the inverse problem formulated herein is concerned with the Volterra-type of non-linear integral equation of the first kind. This leads to numerical instability: solutions of the inverse problem lack stability properties. In order to overcome the difficulty, a regularization method is applied to the identification process. In addition, an L-curve criterion, combined with regularization, is introduced to find an optimal choice for the regularization parameter (i.e., the number of iterations), in the presence of noisy data. The workability of the identification is investigated for simultaneously recovering the functional form of the non-linear damping and the non-linear restoring forces through a numerical experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.