Abstract
AbstractWe propose a new method to derive the nightside thermospheric density by extending Global Ultraviolet Imager (GUVI) dayside limb observations using empirical orthogonal function (EOF) analysis. First, we acquire the GUVI dayside total mass density during 2002–2005 to construct a preliminary empirical model (EM). Simultaneously, we decompose the background thermospheric density from U.S. Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Extended model into different EOFs. The decomposed EOFs are then used to fit the continuous density from EM, to develop a new nightside extended model (NEM). The preliminary EM and developed NEM are further evaluated with Challenging Minisatellite Payload (CHAMP) satellite observations. Higher correlation coefficients and smaller relative standard errors between CHAMP observations and the NEM results are obtained than those between CHAMP observations and the EM results, and the NEM results are in good agreement with the CHAMP observations in time series during both daytime and nighttime, which all prove the NEM method is effective to the reproduction and extension of GUVI original dayside observations. Furthermore, the NEM reveals two typical seasonal variation features, the semiannual variation and equinoctial asymmetry of thermospheric density. The model provides an effective tool to derive the nightside thermospheric density and explore the thermospheric intrinsic structure, and needs the further development to achieve more widespread application of the thermosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.