Abstract

Monitoring ventilated infants is difficult during high-frequency oscillatory ventilation (HFOV). This study tested the possible causes of hypoxemic episodes using a new method for monitoring chest wall movement during HFOV in newborn infants. Three miniature motion sensors were attached to both sides of the chest and to the epigastrium to measure the local tidal displacement (TDi) at each site. A >20% change in TDi was defined as deviation from baseline. Eight premature infants (postmenstrual age 30.6 ± 2.6 weeks) were monitored during 10 sessions (32.6 h) that included 21 hypoxemic events. Three types of such events were recognized: decrease in TDi that preceded hypoxemia (n = 11), simultaneous decrease in TDi and SpO2 (n = 6), and decrease in SpO(2) without changes in TDi (n = 4). In the first group, decreases in TDi were detected 22.4 ± 18.7 min before hypoxemia, and were due to airway obstruction by secretions or decline in lung compliance. The second group resulted from apnea or severe abdominal contractions. In the third group, hypoxia appeared following a decrease in FiO2. Monitoring TDi may enable early recognition of deteriorating ventilation during HFOV that eventually leads to hypoxemia. In about half of cases, hypoxemia is not due to slowly deteriorating ventilation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call