Abstract
For proton linear accelerators used in applications such as accelerator-driven systems, due to the nature of the operation, it is essential for the beam failure rate to be several orders of magnitude lower than usual performance of similar accelerators. A fault-tolerant mechanism should be mandatorily imposed in order to maintain short recovery time, high uptime and extremely low frequency of beam loss. This paper proposes an innovative and challenging way for compensation and rematch of cavity failure using fast electronic devices and Field Programmable Gate Arrays (FPGAs) instead of embedded computers to complete the computation of beam dynamics. A method of building an equivalent model for the FPGA, with optimization using a genetic algorithm, is shown. Results based on the model and algorithm are compared with TRACEWIN simulation to show the precision and correctness of the mechanism.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.