Abstract

Let X1, X2,..., Xn and Y1, Y2,..., Yn be two sequences of independent random variables which take values in ℤ and have finite second moments. Using a new probabilistic method, upper bounds for the Kolmogorov and total variation distances between the distributions of the sums \(\sum_{i=1}^{n}X_{i}\) and \(\sum_{i=1}^{n}Y_{i}\) are proposed. These bounds adopt a simple closed form when the distributions of the coordinates are compared with respect to the convex order. Moreover, they include a factor which depends on the smoothness of the distribution of the sum of the Xi’s or Yi’s, in that way leading to sharp approximation error estimates, under appropriate conditions for the distribution parameters. Finally, specific examples, concerning approximation bounds for various discrete distributions, are presented for illustration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.