Abstract

Abstract Improving the land-use efficiency (LUE) of farming systems could satisfy increasing global food, feed, biomass and bioenergy demand in a sustainable manner. This study presents a new method for calculating LUE, beginning with an overview of different approaches to assessing agricultural LUE. This new method takes into account the quality and function of agricultural products and the relationship between the yield of the assessed farm and the average yield of the reference region with comparable soils, climate and socio-economic conditions. The new approach was tested using data from long-term experiments at the Scheyern Research Farm in southern Germany, which include different farming systems (organic mixed farming, arable farming, and agroforestry; conventional arable farming and agroforestry). In our case studies, the LUE of conventional systems (arable farming: 1.00; improved arable farming: 1.06; agroforestry: 0.98) was higher than those of the organic systems (mixed farming: 0.69; arable farming: 0.33; agroforestry: 0.43) due to different crop rotations, dry matter yields, and biomass usage (harvest ratio). The conversion of high-input arable farming systems (conventional farming) to agroforestry systems is an extensification with negative effects on the dry matter yield and land-use efficiency. Nevertheless, the conversion to agroforestry systems can increase dry matter yield and land-use efficiency in low-input arable farming systems (organic farming). LUE should be used in combination with agri-environmental indicators, in order to ensure both efficient and sustainable land use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call