Abstract
This study analyzed the toxicity of organophosphorus pesticide, dimethoate on freshwater rotifer Brachionus calyciflorus, using swimming angular and linear speed alteration as the sub-lethal endpoints. Response surface methodology (RSM) was applied in experimental design and data analysis to consider two related factors: toxic concentration, exposure time and their interaction. In general, inhibition effect of the pesticide on rotifer swimming was observed clearly at any given toxicant concentration. The highest inhibition rates in angular and linear speed were obtained in the shortest exposure time (11.36min) and the highest dimethoate concentration (1.85mgL−1). The RSM used for the analysis of treatment combinations showed that a cubic polynomial regression model was in good agreement with experimental results, with R2=0.992 and 0.9997, for swimming angular speed inhibition rate and linear speed inhibition rate (p<0.01, F-test, respectively). 3D reference surface plots and contour plots showed that the toxic effect was influenced not only by dimethoate concentration, but also by the exposure time. A time-step effect was observed clearly. Thus, the pesticide dimethoate had toxic stress on the swimming behavior of rotifers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.