Abstract
This paper presents the conceptual design for a new method for the suppression of OH emission lines at near-infrared (NIR) wavelengths by actively adjusting the aperiodic fiber optic Bragg gratings tension. First, we prepared an experimental study in which we simulated an OH emission line using a semiconductor laser at 1548.43 nm and a commercial FBG, with a Bragg wavelength of 1547.76 nm. We demonstrated that the grating Bragg wavelength can be adjusted by controlling the linear deformation of the fiber with a force in the range of 0 to 53.88 gf (0.528 N) that provides a sensitivity of 0.014 nm g −1 . Second, we proposed the design of a system connected to the telescope instrumentation, with the different stages that would allow monitoring the suppression of emission lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.