Abstract

SUMMARY We present a procedure for localizing underground positions using a time-domain inductive electromagnetic (EM) method. The position to be localized is associated with an EM receiver placed inside the Earth. An EM field is generated by one or more transmitters located at known positions at the Earth’s surface. We then invert the EM field data for the receiver positions using a trust-region algorithm. For any given time regime and source–receiver geometry, the propagation of the electromagnetic fields is determined by the electrical conductivity distribution within the Earth. We show that it is sufficient to use a simple 1-D model to recover the receiver positions with reasonable accuracy. Generally, we demonstrate the robustness of the presented approach. Using confidence ellipses and confidence intervals we assess the accuracy of the recovered location data. The proposed method has been extensively tested against synthetic data obtained by numerical experiments. Furthermore, we have successfully carried out a location recovery using field data. The field data were recorded within a borehole in Alberta (Canada) at 101.4 m depth. The recovered location of the borehole receiver differs from the actual location by 0.70 m in the horizontal plane and by 0.82 m in depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.