Abstract

In previous studies, branch length similarity (BLS) entropy was suggested to characterize spatial data, such as an object’s shape and poses. The entropy was defined on a simple network consisting of a single node and branches. The simple network was referred to as the “unit branching network” (UBN). In the present study, I applied the BLS entropy concept to temporal data (e.g., time series) by forming UBNs on the data. The temporal data were obtained from the logistic equation and the movement behavior of Chironomid riparius. Using the UBNs, I calculated a variable, γ, defined as the ratio of the mean entropy value to the standard deviation for the difference values of the sets of two UBNs connected with each other along a given direction. Consequently, I found that ? could be effectively used to characterize temporal data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.