Abstract

In these days, there are many various diseases, whose diagnosis is very hardly. Breast cancer is one of these type diseases. In this paper, accuracy diagnosis of normal, benign, and malign breast cancer cell were found by combining mean success rates Jensen Shannon, Hellinger, and Triangle measure which connected with each other. In this article, an diagnostic method based on feature extraction Discrete Wavelet Entropy Energy (DWEE) and Jensen Shannon, Hellinger, Triangle Measure (JHT) Classifier for diagnosis of breast cancer. This diagnosis method is called as DWEE--JHT this paper. With this diagnosis method have found optimal feature subset using discrete wavelet transform feature extraction. Then these convenient features are given to Jensen Shannon, Hellinger, Triangle Measure (JHT) classifier. Then, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, breast cancer cells are classified using Jensen Shannon, Hellinger, and Triangle distance. Mean success rate of 16 feature vector with Jensen Shannon classifier is found % 97.81. Mean success rate of 16 feature vector with Hellinger classifier is found % 97.75. Mean success rate of 16 feature vector with Triangle classifier is found % 97.87. By averaging of results obtained from these 3 classifiers are found as 97.81 % average of accuracy diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.