Abstract
Protein import into chloroplasts relies on specific targeting of preproteins from the cytosol to the organelles and coordinated translocation processes across the double envelope membrane. Here, two complex machineries constitute the so called general import pathway, which consists of the TOC and TIC complexes (translocon at the outer envelope of chloroplasts and translocon at the inner envelope of chloroplasts, respectively). The majority of canonical preproteins feature an N-terminal cleavable transit peptide, which is necessary for targeting and recognition at the chloroplast surface by receptors of TOC, where Toc159 acts as the primary contact site. We identified a non-canonical preprotein without the classical transit peptide, the superoxide dismutase (FSD1), which was then used in chemical crosslinking approaches to find new interaction partners at the outer envelope from pea chloroplasts. In this way we could link FSD1 to members of the Toc159 family in pea, namely psToc132 and psToc120. Using deletion mutants as well as a peptide scanning approach we defined regions of the preprotein, which are involved in receptor binding. These are distributed across the entire sequence; however the extreme N-terminus as well as a C-proximal domain turned out to be essential for targeting and import. En route into the plastid FSD1 engages components of the general import pathway, implying that in spite of the non-canonical targeting information and recognition by a specific receptor this preprotein follows a similar way across the envelope as the majority of plastid preproteins.
Highlights
Plastids represent a large set of organelles with distinct physiological functions and morphologies found within all plant cells (Lopez-Juez and Pyke, 2005)
We identified a non-canonical preprotein without the classical transit peptide, the superoxide dismutase (FSD1), which was used in chemical crosslinking approaches to find new interaction partners at the outer envelope from pea chloroplasts
The main criterion for the selection was based on their robust prediction for the lack of a chloroplast transit peptide
Summary
Plastids represent a large set of organelles with distinct physiological functions and morphologies found within all plant cells (Lopez-Juez and Pyke, 2005). It is generally accepted that the TOC GTPase receptors control transit peptide recognition and the initial stages of membrane translocation by GTP-binding and -hydrolysis which lead to molecular rearrangements, but the molecular details that hinges GTPase activity with receptor function remain need to be further investigated. In addition to these two domains, Toc159 harbors an N-terminal region, which is highly acidic (A-domain) (Kessler et al, 1994). These GTPases are unique to plastids and are responsible for www.frontiersin.org
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.