Abstract
AbstractThe preparation and characterization of a new ruthenium nitrosyl based on the pentadentate ligand (CH2py)2Me[9]aneN3 (1‐methyl‐4,7‐bis(pyridin‐2‐ylmethyl)‐1,4,7‐triazacyclononane) is reported. The octahedral species contains a {RuNO}6 fragment and can be isolated in the solid state as a PF6− salt. In acetonitrile, this platform allows exploring the reduction processes in 1‐electron steps from {RuNO}6 to {RuNO}8, with associated E° values of 0.421 V and −0.628 V (vs. Ag/AgCl, 3 M NaCl), respectively. The {RuNO}7 species is paramagnetic, its EPR spectrum in vitrified acetonitrile at 90 K is consistent with an S= center with g=(2.0095, 1.9992, 1.8785) coupled to a 14N nucleus, with A=(6.9, 30.24, 1.85)×10−4 cm−1. In acidified aqueous solution, the first reduction process at 0.101 V leads to the formation of {RuNO}7, as in aprotic medium (acetonitrile). However, the incorporation of a second electron is coupled to a protonation process of the nitroxyl group, generating a coordinated azanone (HNO) compound with pKa(HNO)=11.0. Spectroscopic information obtained via spectroelectrochemistry and electronic structure calculations assist in the rationalization of results. Overall, this new compound enhances the library of nitrosylated Ru species with combined redox, acid‐base, and spectroscopic characterization in water and confirms experimental correlations found in related species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.