Abstract

We present a way of protecting a Dirac fermion interacting with a scalar (Higgs) field from getting a mass from the vacuum. It is obtained through an implementation of translational symmetry when the theory is formulated with a momentum cutoff, which forbids the usual Yukawa term. We consider that this mechanism can help to understand the smallness of neutrino masses without a tuning of the Yukawa coupling. The prohibition of the Yukawa term for the neutrino forbids at the same time a gauge coupling between the right-handed electron and neutrino. We prove that this mechanism can be implemented on the lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.