Abstract

The carbon in ancient carbonaceous chondritic meteorites is mainly in a hydrocarbon composite similar to terrestrial kerogen, a cross-linked structure of aliphatic and aromatic hydrocarbons. Until recently, the composite has been commonly thought to have been produced in the early solar nebula by a Fischer-Tropsch-type process, involving the catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen on grain surfaces. Instead, the aromatic hydrocarbons may form in gas-phase pyrolysis of simple aliphatics like acetylene and methane by a mechanism developed recently to explain formation of soot in combustion and of aromatic molecules in circumstellar envelopes. Nonequilibrium chemical kinetic calculations indicate that this mechanism can produce meteoritic aromatics if the initial concentration of simple hydrocarbons in the solar nebula was sufficiently but not unreasonably high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.