Abstract

While it has long been known that a large number of short-lived transient spirals can cause stellar migration, here we report that another mechanism is also effective at mixing disks of barred galaxies. The resonance overlap of the bar and spiral structure induces a nonlinear response leading to a strong redistribution of angular momentum in the disk. We find that, depending on the amplitudes of the perturbers, the changes in angular momentum, dL, could occur up to an order of magnitude faster than in the case of recurrent spirals. The signature of this mechanism is a bimodality in dL with maxima near the bar's corotation and its outer Lindblad resonance; this is independent of the properties of the spiral structure. For parameters consistent with the Milky Way the disk mixes in about 3 Gyr and the stellar velocity dispersion increases with time in a manner roughly consistent with observations. This new mechanism could account for both the observed age-velocity relation and the absence of age-metallicity relation in the solar neighborhood. Spiral-bar interaction could also explain observations showing that strongly barred galaxies have weaker metallicity gradients than weakly barred or non-barred galaxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.