Abstract

Inspired by the hypothesis of the black hole molecule, with the help of the Hawking temperature, entropy, and the thermodynamic curvature of black holes, we propose a new measure of the relation between the interaction and the thermal motion of molecules of the AdS black hole as a preliminary and coarse-grained description. The proposed measure introduces a dimensionless ratio to characterize this relation and shows that there is indeed competition between the interactions of black hole molecules and their thermal motion. For a charged AdS black hole, below the critical dimensionless pressure, there are three transitions between the interaction and thermal motion states. In contrast, above the critical dimensionless pressure, only one transition takes place. For the Schwarzschild-AdS and five-dimensional Gauss-Bonnet AdS black holes, a transition always occurs between the interaction and thermal motion states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.