Abstract
In this paper we propose a new arbitrary-order Finite Volume method for the numerical solution of the Euler and Navier-Stokes equations on unstructured grids. Arbitrary order is achieved using a modified Moving Least Squares reconstruction, which preserves the mean values of the conservative variables. Hence, the proposed scheme changes the traditional error functional of the MLS reconstruction in order to compare the cell-averaged values. Several benchmark problems are used to assess the proposed scheme’s accuracy and performance, to show that arbitrary order of convergence can be achieved. Furthermore, the proposed method is applied to the numerical solution of the Navier-Stokes equations and its ability to simulate turbulent flows is verified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.