Abstract

Water loss reduction in water distribution systems (WDSs) is a challenging task for water utilities worldwide. One of the most reliable and cost-effective ways to reduce water loss is to properly regulate operational pressure of the system through optimizing pressure reducing valve (PRV) placements. This well-known engineering problem can be casted into a mixed-integer nonlinear program (MINLP) where binary variables are introduced to represent positions of PRVs. Many works in the literature applied heuristic algorithms to address the optimization problem. In this paper, at first, we proposed a new optimization model and reformulated it as the mathematical program with complementarity constraints (MPCCs). It is due to the fact that the stationary point of the MPCCs is likely to be trapped into bad local solutions, a soft heuristic method is then proposed to determine the MINLP local solution in each iteration before a stationary point of the MPCCs is reached. This method not only enhances the quality of MINLP solution, but also decreases computation time for solving the MPCCs. The newly formulated MPCCs is applied to determine optimal localization of PRVs for two WDS benchmarks and a real-world WDS in Vietnam. The results are compared with others in the literature demonstrating that using our new optimization model, better and more reliable MINLP solution can be found for large scale WDSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.