Abstract

The purpose of this study was to analyze and compare a series of measured radial pulse waves as a function of contact pressure for young and old healthy volunteers, and old patients with cardiovascular disease. The radial pulse waves were detected with a pressure sensor and the contact pressure of the sensor was incremented by 20gf during the signal acquisition. A mathematical model of radial pulse waveform was developed by using two Gaussian functions modulated by radical functions and used to fit the pulse waveforms. Then, a ratio of area (rA) and a ratio of peak height (rPH) between percussion wave and dicrotic wave as a function of contact pressure were calculated based on fitted parameters. The results demonstrated that there was a maximum for waveform peak height, a minimum for rA (rAmin) and a minimum for rPH (rPHmin) appeared as contact pressure varied. On average, older patients had higher peak amplitude and a significantly smaller rAmin (p<0.001) and rPHmin (p<0.02) than the young and old volunteers. The rAmin and rPHmin calculated with the mathematical model had moderate to strong positive linear correlations (r=0.66 to 0.84, p<0.006) with those directly calculated without the model. The receiver operating characteristic (ROC) analysis showed that the rAmin calculated with the model and the contact pressure measured at the rAmin had good diagnostic accuracy to distinguish healthy volunteers vs. diseased patients. Therefore, using the mathematical model to quantitatively analyze the radial pulse waveforms as a function of contact pressure could be useful in the diagnosis of cardiovascular diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.