Abstract
It is shown that the three nonlinear dynamic Euler ordinary differential equations (ODEs), concerning the motion of a rigid body free to rotate about a fixed point, are reduced, by means of a subsidiary function which is to be determined, to three Abel equations of the second kind of the normal form. Based on a recently developed mathematical construction concerning exact analytic solutions of the Abel nonlinear ODEs of the second kind, we perform a new mathematical solution for the classical dynamic Euler nonlinear ODEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.