Abstract

A new species of DNA polymerase has been purified more than 10 000-fold from the cytoplasm of erythroid hyperplastic bone marrow. This DNA polymerase, in contrast to previously described eukaryotic DNA polymerases, is associated with a very active 3' to 5' exonuclease activity. Similar to the 3' to 5' exonuclease activity associated with prokaryotic DNA polymerases, this enzyme catalyzes the removal of 3'-terminal nucleotides from DNA, as well as a template-dependent conversion of deoxyribonucleoside triphosphates to monophosphates. The exonuclease activity is not separable from the DNA polymerase activity by chromatography on DEAE-Sephadex or hydroxylapatite, and upon sucrose density gradient centrifugation the two activities cosediment at 7 S or at 11 S depending on the ionic strength. Both exonuclease and polymerase activities have identical rates of heat inactivation and both are equally sensitive to hemin and Rifamycin AF/013, inhibitors of DNA synthesis that act by binding to DNA polymerase and causing its dissociation from its template/primer. These results are consistent with the coexistence of two enzyme activities in a single protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.