Abstract

Traditional vital signs are an essential part of triage assessment in emergency departments (ED), and have been widely used in trauma prediction models. Previous researchers have studied the effect of vital signs scores on predicting traumatic injury outcomes and have found it to be significant. Based on the vital signs’ scores, an Interpretable Machine Learning (IML) method is proposed to predict patient outcomes and is compared with various ML algorithms. Results indicate that the IML method has a comparable performance with a mean AUC of 0.683, and its interpretability would help in the early identification of trauma patients at risk of mortality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.