Abstract

Advances in computer networks led to the generation of much data that computer networks must be capable of transmitting. The security of this volume of data is a major challenge for companies. Intrusion detection systems is one of the solutions that researchers introduced for this challenge. This research aims to introduce a new machine learning model for intrusion detection. The proposed model includes two stages of feature selection and attack identification. The feature selection stage uses genetic algorithm and logistic regression algorithm to find a correlated subset of features. In the attack detection phase, the ANN algorithm is used. ANN is trained by particle optimization (PSO) and gravitational search (GS) algorithms. To evaluate the proposed model, two sets of NSL-KDD and KDD Cup'99 are used and results are compared with ANN based on gradient descent (GD-ANN) and decision tree, ANN based on genetic algorithm (GA-ANN) methods, ANN based on GSPSO (GSPSO-ANN), ANN based on PSO (PSO-ANN) and ANN based on GS (GS-ANN) indicate the superiority of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.