Abstract

Several wireless networking solutions have been developed to provide different types of services for various end user applications. Currently, wireless networking infrastructures are not suitable for multimedia applications each requiring a different QoS support with various traffic parameters. Due to the success of ATM technology in the wired network, WATM concept and related researches are of importance in the information technology area. Main objective of WATM, which promises seamless transmission of different traffics such as voice, data and video over wireless medium, is to implement high bit rate and QoS guaranteed data transfer, already well achieved by ATM technology over wired medium. To support QoS guaranteed data transfer over error-prone and low bandwidth wireless medium, an effective MAC protocol must be designed and utilized. In this paper, a new TDMA/FDD based MAC protocol, maintaining QoS requirements of real-time wireless multimedia applications, is proposed. The main contribution of this study is the new guarantee-based scheduling algorithm used in the proposed MAC to support required level of QoS guarantee for all multimedia traffic types in wireless medium. Computer modeling and simulation of the new approach providing CBR, VBR, ABR and UBR ATM services are realized using OPNET Modeler. Simulation results are also presented together with comparisons those of a WATM counterpart which uses PRMA/DA MAC protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.