Abstract

As an important member of reactive oxygen species, hydrogen peroxide (H2O2) plays a key role in oxidative stress and cell signaling. Abnormal levels of H2O2 in lysosomes can induce damage or even loss of lysosomal function, leading to certain diseases. Therefore, real-time monitoring of H2O2 in lysosomes is very important. In this work, we designed and synthesized a novel lysosome-targeted fluorescent probe for H2O2-specific detection based on a benzothiazole derivative. A morpholine group was used as a lysosome-targeted unit and a boric acid ester was chosen as the reaction site. In the absence of H2O2, the probe exhibited very weak fluorescence. In the presence of H2O2, the probe showed an increased fluorescence emission. The fluorescence intensity of the probe for H2O2 displayed a good linear relationship in the concentration range of H2O2 from 8.0×10-7 to 2.0×10-4 mol·L-1. The detection limit was estimated to be 4.6×10-7 mol·L-1 for H2O2. The probe possessed high selectivity, good sensitivity and short response time for the detection of H2O2. Moreover, the probe had almost no cytotoxicity and had been successfully applied to confocal imaging of H2O2 in lysosomes of A549 cells. These results illustrated that the developed fluorescent probe in this study could provide a good tool for the determination of H2O2 in lysosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.