Abstract

Aquaporins play important roles in maintaining plant water status under challenging environments. The regulation of aquaporin density in cell membranes is essential to control transcellular water flows. This work focuses on the maize (Zea mays) plasma membrane intrinsic protein (ZmPIP) aquaporin subfamily, which is divided into two sequence-related groups (ZmPIP1s and ZmPIP2s). When expressed alone in mesophyll protoplasts, ZmPIP2s are efficiently targeted to the plasma membrane, whereas ZmPIP1s are retained in the endoplasmic reticulum (ER). A protein domain-swapping approach was utilized to demonstrate that the transmembrane domain3 (TM3), together with the previously identified N-terminal ER export diacidic motif, account for the differential localization of these proteins. In addition to protoplasts, leaf epidermal cells transiently transformed by biolistic particle delivery were used to confirm and refine these results. By generating artificial proteins consisting of a single transmembrane domain, we demonstrated that the TM3 of ZmPIP1;2 or ZmPIP2;5 discriminates between ER and plasma membrane localization, respectively. More specifically, a new LxxxA motif in the TM3 of ZmPIP2;5, which is highly conserved in plant PIP2s, was shown to regulate its anterograde routing along the secretory pathway, particularly its export from the ER.

Highlights

  • Aquaporins play important roles in maintaining plant water status under challenging environments

  • We previously showed that the maize PIP1 and PIP2 isoforms exhibit different water channel activities when expressed in Xenopus laevis oocytes, with only PIP2s increasing the membrane water permeability coefficient (Pf; Chaumont et al, 2000)

  • These results indicate that ZmPIP2s, but not ZmPIP1s, possess signals that allow them to be delivered to the plasma membrane (PM), and that hetero-oligomerization is required for ZmPIP1 trafficking to the PM

Read more

Summary

Introduction

Aquaporins play important roles in maintaining plant water status under challenging environments. This result suggests that other export signals might be present in PIP2s and/or ER retention signals might be present in PIP1s elsewhere than in the N terminus

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call