Abstract

We developed a new mammalian cell-based luciferase reporter gene assay for androgenic and antiandrogenic activities of chemicals and environmental samples. Environmental samples usually have a complex matrix that may contain the constituents acting as androgen receptor (AR) agonists, AR antagonists or aryl hydrocarbon receptor (AhR) agonists. AhR agonists are known to elicit the antiandrogenic effect through cross-talk between AR and AhR signal transduction pathways. In this study, PC3/AR human prostate carcinoma cells were transiently transfected with a prostate-specific antigen (PSA) promoter-driven luciferase expression plasmid. The cells were treated with a test compound or an environmental sample for 24 h at 37 degrees C and then measured for luciferase activity. The luciferase activity was induced by dihydrotestosterone (DHT) in a concentration-dependent manner in a concentration range from 10 fM to 1 nM. R1881, a synthetic androgen receptor agonist, induced luciferase activity and its inductive effects was additive to that of DHT. The luciferase activity was not induced by cortisol, a glucocorticoid, progesterone, a progestin, and 17beta-estradiol, an estrogen in a concentration range of up to 1 microM. DHT-induced luciferase activity was reduced by bicalutamide and cyproterone acetate, AR antagonists, and also by benzo[a]pyrene, an aryl hydrocarbon receptor agonist, through AhR-mediated pathways. All of these findings indicate that the present assay system correctly responds to AR agonists, AR antagonists and AhR agonist and, therefore, it is a powerful tool for the sensitive and selective screening of chemicals and environmental samples for their androgenic and antiandrogenic activities. We developed the first assay system, in which the expression of luciferase was driven by the promoter of a prostate-specific antigen gene, a typical human androgen-regulated gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.