Abstract
For the Sierpinski gasket, by using a sort of cover consisting of special regular hexagons, we define a new measure that is equivalent to the Hausdorff measure and obtain a lower bound of this measure. Moreover, the following lower bound of the Hausdroff measure of the Sierpinski gasket has been achieved $$H^s (S) \geqslant 0.670432,$$ where S denotes the Sierpinski gasket, s =dimH(S) =log 23, and Hs(S) denotes the s-dimensional Hausdorff measure of S. The above result improves that developed in ba][2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.