Abstract

Growth of helium (He) bubbles with different initial sizes in tungsten (W) has been investigated by performing molecular dynamics simulations. Based on the simulation results a new loop punching mechanism for the large helium bubble growth is proposed. Different from the growth of small-size He bubbles by pushing out self-interstitial atoms and then rearranging into a prismatic dislocation loop, a large-size bubble grows by pushing out a dislocation, subsequently cross-slipping of its screw components and finally evolving into a prismatic dislocation loop. Such dislocations may react with each other to form a dislocation net around the bubble rather than to convert to prismatic dislocation loops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.