Abstract

In this paper we take a new look at smoothing Newton methods for solving the nonlinear complementarity problem (NCP) and the box constrained variational inequalities (BVI). Instead of using an infinite sequence of smoothing approximation functions, we use a single smoothing approximation function and Robinson’s normal equation to reformulate NCP and BVI as an equivalent nonsmooth equation H(u,x)=0, where H:ℜ 2n →ℜ 2n , u∈ℜ n is a parameter variable and x∈ℜ n is the original variable. The central idea of our smoothing Newton methods is that we construct a sequence {z k =(u k ,x k )} such that the mapping H(·) is continuously differentiable at each z k and may be non-differentiable at the limiting point of {z k }. We prove that three most often used Gabriel-More smoothing functions can generate strongly semismooth functions, which play a fundamental role in establishing superlinear and quadratic convergence of our new smoothing Newton methods. We do not require any function value of F or its derivative value outside the feasible region while at each step we only solve a linear system of equations and if we choose a certain smoothing function only a reduced form needs to be solved. Preliminary numerical results show that the proposed methods for particularly chosen smoothing functions are very promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.