Abstract
We analyze the behavior of the implied volatility smile for options close to expiry in the exponential Lévy class of asset price models with jumps. We introduce a new renormalization of the strike variable with the property that the implied volatility converges to a nonconstant limiting shape, which is a function of both the diffusion component of the process and the jump activity (Blumenthal–Getoor) index of the jump component. Our limiting implied volatility formula relates the jump activity of the underlying asset price process to the short‐end of the implied volatility surface and sheds new light on the difference between finite and infinite variation jumps from the viewpoint of option prices: in the latter, the wings of the limiting smile are determined by the jump activity indices of the positive and negative jumps, whereas in the former, the wings have a constant model‐independent slope. This result gives a theoretical justification for the preference of the infinite variation Lévy models over the finite variation ones in the calibration based on short‐maturity option prices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.