Abstract

In this work, we study the classical and quantum properties of the unique commutative Lorentz-covariant connection for loop quantum gravity. This connection has been found after solving the second-class constraints inherited from the canonical analysis of the Holst action without the time-gauge. We show that it has the property of lying in the conjugacy class of a pure $\su(2)$ connection, a result which enables one to construct the kinematical Hilbert space of the Lorentz-covariant theory in terms of the usual $\SU(2)$ spin-network states. Furthermore, we show that there is a unique Lorentz-covariant electric field, up to trivial and natural equivalence relations. The Lorentz-covariant electric field transforms under the adjoint action of the Lorentz group, and the associated Casimir operators are shown to be proportional to the area density. This gives a very interesting algebraic interpretation of the area. Finally, we show that the action of the surface operator on the Lorentz-covariant holonomies reproduces exactly the usual discrete $\SU(2)$ spectrum of time-gauge loop quantum gravity. In other words, the use of the time-gauge does not introduce anomalies in the quantum theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.