Abstract

This article describes a recently proposed methodology that allows one to work with infinitely large and infinitely small quantities on a computer. The approach uses a number of ideas that bring it closer to modern physics, in particular, the relativity of mathematical knowledge and its dependence on the tools used by mathematicians in their studies are discussed. It is shown that the emergence of new computational tools influences the way we perceive traditional mathematical objects, and also helps to discover new interesting objects and problems. It is discussed that many difficulties and paradoxes regarding infinity do not depend on its nature, but are the result of the weakness of the traditional numeral systems used to work with infinitely large and infinitely small quantities. A numeral system is proposed that not only allows one to work with these quantities analytically in a simpler and more intuitive way, but also makes possible practical calculations on the Infinity Computer, patented in a number of countries. Examples of measuring infinite sets with the accuracy of one element are given and it is shown that the new methodology avoids the appearance of some well-known paradoxes associated with infinity. Examples of solving a number of computational problems are given and some results of teaching the described methodology in Italy and Great Britain are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call