Abstract

While the results of early work on the density limit in tokamaks from the ORMAK and DITE groups have been useful over the years, results from recent experiments and the requirements for extrapolation to future experiments have prompted a new look at this subject. There are many physical processes which limit the attainable densities in tokamak plasmas. These processes include: (1) radiation from low Z impurities, convection, charge exchange and other losses at the plasma edge; (2) radiation from low or high Z impurities in the plasma core; (3) deterioration of particle confinement in the plasma core; and (4) inadequate fuelling, often exacerbated by strong pumping by walls, limiters or divertors. Depending upon the circumstances, any of these processes may dominate and determine a density limit. In general, these mechanisms do not show the same dependence on plasma parameters. The multiplicity of processes leading to density limits with a variety of scaling has led to some confusion when comparing density limits for different machines. The authors attempt to sort out the various limits and to extend the scaling law for one of them to include the important effects of plasma shaping, i.e. n̄;e = kJ̄, where ne is the line average electron density (1020 m−3), κ is the plasma elongation and J̄(MA·m−2) is the average plasma current density, defined as the total current divided by the plasma cross-sectional area. In a sense, this is the most important density limit since, together with the q-limit, it yields the maximum operating density for a tokamak plasma. It is shown that this limit may be caused by a dramatic deterioration in core particle confinement occurring as the density limit boundary is approached. This mechanism can help explain the disruptions and Marfes that are associated with the density limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.