Abstract

Specially designed microfluidic bioflow cells were used to temporarily trap microbubbles during different inoculation stages of Pseudomonas sp. biofilms. Despite being eliminated many hours before biofilm appearance, templated growth could occur at former bubble positions. Bubble-templated growth was either continuous or in ring patterns, depending on the stage of inoculation when the bubbles were introduced. Templated biofilms were strongly enhanced in terms of their growth kinetics and structural homogeneity. High resolution confocal imaging showed two separate bubble-induced bacterial trapping modes, which were responsible for the altered biofilm development. It is concluded that static bubbles can be exploited for fundamental improvements to bioreactor performance, as well as open new avenues to study isolated bacteria and small colonies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call