Abstract

Peroxynitrite (OONO-), as a reactive oxygen species (ROS), would be mostly profoundly implicated in diseases such as inflammation in organisms. However, bioimaging of ONOO- still faces difficulties owing to the shortage of bioimaging and real-time dynamic tracking distribution of ROS in inflammation. To address this challenge, we designed and synthesized a long-wavelength fluorescent probe based on tricyanofuran (ACDM-BE), which exhibits a fast response (response time is 40 s), high selectivity and great sensitivity (LOD is approximately 21 nM) towards ONOO-. ACDM-BE was shown to be capable of detecting ONOO- in living cells and monitor the changes in ONOO- levels under the stimulus of various concentrations of SIN-1 (from 100 to 700 μM), which was successfully tracked by the fluorescence changes in live cells. It is worth noting that ACDM-BE further demonstrated its ability to track the dynamic changes of the level of ONOO- in the inflammatory sites of larval zebrafish. Thus, ACDM-BE could be employed as an efficient tool for exploiting the role of ONOO- in inflammation in living biosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call