Abstract

In this paper, a multi-static system working in an active way is made up of ionospheric oblique backscatter sounding system (IOBSS) and two separate receiving stations, which adopts discontinuous wave mechanism. We have advanced a new model that contains skywave condition to locate over-the-horizon targets. We use a single quasi-parabolic (QP) ionosphere model and an analytic ray-tracing program to obtain the coordinate registration (CR) index, which changes skywave group range to ground range. Also, IOBSS and other two receiving stations use this distance information to locate the target which is far away from the system. The analytic expression for the geometric dilution of precision (GDOP) under different station deployments are obtained, which shows GDOP is influenced by the system measurement precision, the stations’ coordinates, and CR index. By computer simulation, we find that GDOP of isosceles right triangle deployment is smaller than that of line deployment and location precision will be improved with increasing base line length. The results indicate that this model is practicable with an acceptable range of error (less than 500 m under certain conditions in this paper).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.