Abstract

We propose a numerical approach, of the BGK kinetic type, that is able to approximate with a given, but arbitrary, order of accuracy the solution of linear and non-linear convection-diffusion type problems: scalar advection-diffusion, non-linear scalar problems of this type and the compressible Navier-Stokes equations. Our kinetic model can use finite advection speeds that are independent of the relaxation parameter, and the time step does not suffer from a parabolic constraint. Having finite speeds is in contrast with many of the previous works about this kind of approach, and we explain why this is possible: paraphrasing more or less [1], the convection-diffusion like PDE is not a limit of the BGK equation, but a correction of the same PDE without the parabolic term at the second order in the relaxation parameter that is interpreted as Knudsen number. We then show that introducing a relaxation matrix instead of the well-known BGK relaxation makes it possible to target a desired convection-diffusion system.Several numerical examples, ranging from a simple pure diffusion model to the compressible Navier-Stokes equations illustrate our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.