Abstract

A novel microwave imaging approach to reconstruct the dielectric properties of targets hosted in partially known, noncanonical, scenarios is proposed and assessed. The method takes joint advantage of the recently introduced virtual experiments paradigm and exploits a new linear approximation developed within such a framework. Such an approximation implicitly depends on the unknown targets and, therefore, has a broader applicability as compared with the traditional distorted Born approximation. Being noniterative, the resulting distorted-wave inversion method is capable of quasi-real-time imaging and successfully images nonweak perturbations. The performances of the novel imaging method have been assessed with simulated data and validated experimentally against some of Fresnel data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.