Abstract
This paper aims to develop a lightweight convolutional neural network, WearNet, to realise automatic scratch detection for components in contact sliding such as those in metal forming. To this end, a large surface scratch dataset obtained from cylinder-on-flat sliding tests was used to train the WearNet with appropriate training parameters such as learning rate, gradient algorithm and mini-batch size. A comprehensive investigation on the network response and decision mechanism was also conducted to show the capability of the developed WearNet. It was found that compared with the existing networks, WearNet can realise an excellent classification accuracy of 94.16% with a much smaller model size and faster detection speed. Besides, WearNet outperformed other state-of-the-art networks when a public image database was used for network evaluation. The application of WearNet in an embedded system further demonstrated such advantages in the detection of surface scratches in sheet metal forming processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.