Abstract
New one-parameter and two-parameter distributions are introduced in this paper. The failure rate of the one-parameter distribution is unimodal (upside-down bathtub), while the failure rate of the two-parameter distribution can be decreasing, increasing, unimodal, increasing-decreasing-increasing, or decreasing-increasing-decreasing, depending on the values of its two parameters. The two-parameter distribution is derived from the one-parameter distribution by using a power transformation. We discuss some properties of these two distributions, such as the behavior of the failure rate function, the probability density function, the moments, skewness, and kurtosis, and limiting distributions of order statistics. Maximum likelihood estimation for the two-parameter model using complete samples is investigated. Different algorithms for generating random samples from the two new models are given. Applications to real data are discussed and compared with the fit attained by some one- and two-parameter distributions. Finally, a simulation study is carried out to investigate the mean square error of the maximum likelihood estimators, the coverage probability, and the width of the confidence intervals of the unknown parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.