Abstract

In Starinshak et al. (J Comput Phys 262(1):1---16, 2014), we proposed a new level-set model for representing multimaterial flows in multiple space dimensions. Rather than associating each level-set function with the boundary of a material, the new model associates each level-set function with a pair of materials and the interface that separates them. In this paper, we extend the model to represent geometries with non-smooth boundaries. The model uses multiple level-set functions to describe the shape boundary, typically with one level-set function per smooth boundary segment. Sign information is collected from all level-set functions and a voting algorithm is used to determine the interior/exterior of the geometric shape. The model is well suited for representing boundaries with singularities; it offers significant improvement over standard level-set approaches, both in shape preservation and area conservation; and it eliminates the need for costly redistancing of the level-set function. Numerical examples illustrate the superior performance of the proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.