Abstract

We derive a new stabilized symmetric Nitsche method for enforcement of Dirichlet boundary conditions for elliptic problems of second order in cut isogeometric analysis (CutIGA). We consider C1 splines and stabilize the standard Nitsche method by adding a certain elementwise least squares terms in the vicinity of the Dirichlet boundary and an additional term on the boundary which involves the tangential gradient. We show coercivity with respect to the energy norm for functions in H2(Ω) and optimal order a priori error estimates in the energy and L2 norms. To obtain a well posed linear system of equations we combine our formulation with basis function removal which essentially eliminates basis functions with sufficiently small intersection with Ω. The upshot of the formulation is that only elementwise stabilization is added in contrast to standard procedures based on ghost penalty and related techniques and that the stabilization is consistent. In our numerical experiments we see that the method works remarkably well in even extreme cut situations using a Nitsche parameter of moderate size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call