Abstract
This paper presents an approach to the local stereo correspondence problem. The primitives or features used are groups of collinear connected edge points called segments. Each segment has several associated attributes or properties. We have verified that the differences of the attributes for the true matches cluster in a cloud around a center. Then for each current pair of primitives we compute a distance between the difference of its attributes and the cluster center. The correspondence is established in the basis of the minimum distance criterion (similarity constraint). We have designed an image understanding system to learn the best representative cluster center. For such purpose a new learning method is derived from the Fuzzy c-Means (FcM) algorithm where the dispersion of the true samples in the cluster is taken into account through the Mahalanobis distance. This is the main contribution of this paper. A better performance of the proposed local stereo-matching learning method is illustrated with a comparative analysis between classical local methods without learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.