Abstract

Advanced denitrogenation of wastewater is now facing major challenges brought by low C/N ratio and low temperature. The development of sustained-release materials with good and stable carbon release properties was an effective countermeasure. FeNi-Layered double-metal hydroxides (LDH)- sodium carboxymethyl cellulose (CMC) filter media and its potential use in heterotrophic and sulfur-based mixotrophic denitrification biological filter (DNBF), was firstly reported. It demonstrated stable structure and good carbon release performance with a mass transfer coefficient (K) of 4.40 mg·L−1·s−1. When the influent NO3−-N of 50 mg/L with the C/N ratio of 3 at 10 °C, the maximum nitrogen loading rate of 0.22 kg·N/(m3·d) and effluent TN close to 5 mg/L (nitrogen removal of almost 90 %) could be achieved. The slowly released carbon source and the leached iron increased the abundance of denitrifying bacteria and functional genes, and the augmentation of Sulfuritalea and the secretion of biofilm protein stimulated by sulfur also played a synergistic role. This study provided a new potentially effective strategy to enhance advanced denitrification of wastewater of low C/N wastewater at low temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.