Abstract
Vinyl chloride (VC) is an industrial chemical that is known to be carcinogenic to animals and humans. VC primarily induces hepatic angiosarcomas following high exposures (≥50 ppm). VC is also found in Superfund sites at ppb concentrations as a result of microbial metabolism of trichloroethylene and perchloroethylene. Here, we report a new sensitive LC-MS/MS method to analyze the major DNA adduct formed by VC, 7-(2-oxoethylguanine) (7-OEG). We used this method to analyze tissue DNA from both adult and weanling rats exposed to 1100 ppm [(13)C(2)]-VC for 5 days. After neutral thermal hydrolysis, 7-OEG was derivatized with O-t-butyl hydroxylamine to an oxime adduct, followed by LC-MS/MS analysis. The limit of detection was 1 fmol, and the limit of quantitation was 1.5 fmol on the column. The use of stable isotope VC allowed us to demonstrate for the first time that endogenous 7-OEG was present in tissue DNA. We hypothesized that endogenous 7-OEG was formed from lipid peroxidation and demonstrated the formation of [(13)C(2)]-7-OEG from the reaction of calf thymus DNA with [(13)C(18)]-ethyl linoleate (EtLa) under peroxidizing conditions. The concentrations of endogenous 7-OEG in liver, lung, kidney, spleen, testis, and brain DNA from adult and weanling rats typically ranged from 1.0 to 10.0 adducts per 10(6) guanine. The exogenous 7-OEG in liver DNA from adult rats exposed to 1100 ppm [(13)C(2)]-VC for 5 days was 104.0 ± 23.0 adducts per 10(6) guanine (n = 4), while concentrations in other tissues ranged from 1.0 to 39.0 adducts per 10(6) guanine (n = 4). Although endogenous concentrations of 7-OEG in tissues in weanling rats were similar to those of adult rats, exogenous [(13)C(2)]-7-OEG concentrations were higher in weanlings, averaging 300 adducts per 10(6) guanine in liver. Studies on the persistence of [(13)C(2)]-7-OEG in adult rats sacrificed 2, 4, and 8 weeks postexposure to [(13)C(2)]-VC demonstrated a half-life of 7-OEG of 4 days in both liver and lung.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.