Abstract

This paper suggests an innovative design methodology of heat transfer system based on a so-called adaptive growth law, which is an essential optimum growth rule of branch systems in nature. The branch systems in nature can grow by adapting themselves automatically to the growth environments in order to achieve better global functional performances, such as the maximal absorption of nutrition or sunlight in plants and the intelligent blood delivery of a vascular system in animal body. Thus, it can be expected that an optimum layout of heat transfer system would be obtained by the generation method based on the growth mechanism of branch systems in nature. First, the emergent process of branch systems in nature is reproduced in computer model by studying their common growth mechanisms. The branch systems are grown by the control of a so-called nutrient density so as to make it possible that the distribution of branches is dependent on the nutrient distribution. Then, the generation method is applied to the layout design problem for heat transfer systems. Both the conductive heat transfer system and the convective heat transfer system are designed by utilizing the generation method based on the growth mechanisms of branch systems in nature. The effectiveness of the suggested design method is validated by the FEM analysis and by the comparison with other conventional optimum design methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call