Abstract

In the present study, a new lattice thermal conductivity model for a thin-film semiconductor is proposed. This model is considered, compared to the existing models, to be more mathematically consistent in the sense that the heat flow is contributed solely by the low-dimensional phonons, and the spatial confinement effects not only on the phonon group and phase velocities but also on the Debye temperature are taken into consideration. To count the boundary scattering effect, an analytical or empirical boundary scattering rate is suggested and added to the total scattering rate via the Mattiessen’s rule. It is found this newly proposed model predicts as well as the existing models and reasonably well with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.