Abstract
A novel lattice Boltzmann method (LBM) with a pseudo-equilibrium potential is proposed for electromagnetic wave propagation in one-dimensional (1D) plasma photonic crystals. The final form of the LBM incorporates the dispersive effect of plasma media with a pseudo-equilibrium potential in the equilibrium distribution functions. The consistency between the proposed lattice Boltzmann scheme and Maxwell’s equations was rigorously proven based on the Chapman–Enskog expansion technique. Based on the proposed LBM scheme, we investigated the effects of the thickness and relative dielectric constant of a defect layer on the EM wave propagation and defect modes of 1D plasma photonic crystals. We have illustrated that several defect modes can be tuned to appear within the photonic bandgaps. Both the frequency and number of the defect modes could be tuned by changing the relative dielectric constant and thickness of the defect modes. These strategies would assist in the design of narrowband filters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.